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An analytical solution of  the nonlinear inverse heat conduction problem is obtained and its application to 
identification of the boundary conditions on the components of  the flow-through part of a gas turbine engine 
is demonstrated. 

Solution of the inverse heat conduction problem (IHCP) for identification of the boundary conditions with 

temperature-dependent thermophysical properties (TPP) of the heat receiver material requires, as a rule, numerical 

methods [1 ]. Calculations on a computer are necessary, starting from the initial heating or cooling of the solid 

body in the liquid or gas flow since at that moment the temperature distribution in it is known, It should be noted 

that at times close to the initial moment, there is no information about changes in the temperature and its gradient 

at the site of temperature sensors, and therefore, to avoid using initially distorted input data, one has to 

manufacture thin heat receivers from materials of high thermal conductivity. 

The analytical solutions of IHCP obtained for the case of constant TPP of the heat receiver material in [2 ] 

are free from this drawback. They do not require knowledge of the initial temperature distribution, and therefore 

the temperature and its gradient measured at any point of the body in any time interval of the process studied can 

be used as initial information. 

I. In the present work we consider an analytical solution of the boundary-value IHCP for the practically 

important case where the TPP of the material of the body depend on temperature. For the overwhelming majority 

of heat-resistant materials used in manufacturing aircraft engines thew thermophysical properties are a linear 

function of the temperature T: 

cp (T) = a + bT , 2 (T) = I + dT .  

For this practically important case we have a nonlinear boundary-value IHTP for the heat conduction equation: 

(a + bT) OT 0 [ (I + dT) OT t o~ - o x  7x  ' x > O ,  ~ > 0 ,  (1) 

with a known change of the temperature in time at the point with the coordinate x = O: 

T ( 0 ,  3) = g ( 3 ) ,  r > 0 ,  (2) 

and with a known change of the temperature gradient at the same point: 

o7" (o, r) 
ox (3) 

The substitution 

(x ,  r) = v (x ,  3) + (3) + g (3) 
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leads to the problem with the homogeneous initial conditions 

[a + b (v + x~o + g) ] (v T + x~o' + g') = [1 + d (v + xso + g) ] (Vxx + d (v x + ~0) 2 , 

v ( 0 , 3 ) = 0 ,  T>0 ,  

v x ( 0 , 3 )  = O ,  ~ > O ,  

the solution of which is sought in the form of the series 

(1 ') 

(2') 

(33 

v (x , 7;)= ~ w n (3) x n ,  (4) 
n=2 

which ensures satisfaction of conditions (2') and (3'). 

Substituting (4) into (1') and equating the coefficients of the same powers of x in the left- and r ight-hand 

sides give relations for finding the functions wn(r): 

1) at x ~ 

(a + bg) g' = 2 ( l +  dg) w 2(7;) + d~o 2 , 

whence w2(z) is obtained; 
2) at x I 

(a + bg) 90' + b~,g' = 6 (l + dg) w 3 (r) + 6d~ow 2 ( 0 ,  

whence we obtain w3(T) with W2(7;) already found; 
2 3) at x 

(a + bg) w' 2 (7:) + t~o~o' + bg' w 2 (3) = 12 (l + dg) W 4 (7;) + 12dww3 ( 0  + 6dw2 ( 0 ,  

(5) 

(6) 

(7) 

(8) 

whence, with w2(7;) and w3(7;) found, we obtain w4(z); 

4) at x 3 

(a + bg) w' 3 (7;) + txpw' 2 (7;) + b~o' w 2 (Q + bg' w 3 (z) = 

= 20 (l + dg) w 5 (Q + 12d~ow 4 (Q + 20dw 2 (v) w 3 (r) + 8d~ow 4 (7;) , 

whence, with w2(~), w3(7;), and W4(7;) k n o w n ,  W5(7;) is found. 

It can be shown that for n = 4, 5, 6 . . . .  we obtain the recurrence formula for the desired functions of lime 

as 

1 
wn+2 = (t + dg) (,~ + 1) (,~ + 2) [ (a + bg) w'n + b~w'._l + 

w kw'n_ k - d  W ( n +  1) nwn+ 1 -  
n - 2  

+ b ~ ' w  n _ l  + bg' w n + b Z 
k=2 

- d  w k wn_~+ 2 k (k - 1) - 2d~o (n + 1) Wn+ 1 -- 
n 

E 
k=2 
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rt 
- d  ~ ]  k ( n - k + 2 )  W~Wn_l:+2]  . (9) 

k=2 

Thus, the solution of nonlinear problem (1')-(3') is formally obtained as series (4), but its convergence 

has not been investigated yet. It can be shown that the use of formula (9) cannot give a rough estimate of I wn I , 
i 

I wnl, i.e., it is impossible to show that 

[ w n[ <- M , [ w'n l <- M , where M > 0 .  (10) 

Indeed, let us assume, for example, that io(~) --- 0, 
insula ted .  T h e n ,  it fol lows f rom expressions 

i 

[w 2~ [ < M for k = 1, 2, . . . .  Then, from (9) we 

i.e., the site of measurement of the temperature g(r) is perfectly 

(5)-(9) that w2n+l  = 0, n = 1, 2 . . . . .  Next, let Iw2k[ _< M a n d  

have the estimate 

[ W2n+2 [ < 1 { M ( l a  + bgl + Ibg'l) + IZ+dgl (2n+ 1) (2n + 2) 

+ Ibl M2(n 2) + Idl M 2 [2 .1+ 4.3 + ... + 2n(2n  - 1)] + 

+ Id l  M 2 t2 -2n  + 4 (2n - 2) + . . .  + 2n.21} = N ,  (11) 

If we showed that at large n the inequality N ___ M is satisfied, then estimate (10) would be true for any 

n. However, nonlinearity of the form T z in initial equation (1) gives a contribution to N equal to 

Q =  2.1 + 4 - 3 + . . . + 2 n ( 2 n -  1) 
(2n + 2) (2n + 1) > 

> 1 . 2 + 2 - 3 + 3 - 4 + . . . + 2 n ( 2 n -  1) > 
2 ( 2 n + 2 ) ( 2 n +  1) 

> 
12 + 22 + 32 + ... + (2n - 1) 2 _ (2n  - 1) 2n (4n + 1) 

2 ( 2 n + 2 ) ( 2 n +  1) 2 ( 2 n + 2 ) ( 2 n +  1) ' 
(12) 

It follows from formula (12) that as n --, oo, N--, 0% too. Consequently, the estimate N in inequality (11) is not 

bounded absolutely by a constant, namely 

lim N = + oo (13)  
/ 1 - * "  0 0  

Thus, to analyze the convergence of series (4), it seems necessary to use more precise estimates than given 

above. This analysis will be carried out in a separate work. 

The present results are applicable to identifying the boundary conditions on the components of the flow- 

through part of a high-temperature gas turbine~after preliminary numerical testing of the developed program. In 

this case, "white noise" of various levels is imposed on the functions g(r) and/o(T) found from the solution of the 

one-dimensional  nonl inear  direct uns teady-s ta te  heat-conduction problem for a plate. The thermophysical 

properties of the plate were approximated in the temperature range from 293 K to the melting point as follows: 

a) for ZhS6 alloy 

2 = 4.5 + 1.39.10 -2 T ,  W / ( m - K ) ,  

cp = 2.18.106 + 3.24.103 T ,  J / ( m a . K )  ; 

b) for ZhS6-K alloy 
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Fig. 1. Schematic of the setup for determination of the heat transfer coefficient 

in the turbine blade section at the side of the gas: 1) measuring section; 2) 

combustion chamber; 3) test blade; 4-9) points in the blade section at which 

the heat transfer coefficient is reconstructed; 10) thermocouple for gas 

temperature measurement; 11) gas receiver; 12) figure slots filled with fire 
cement; 13) thermal electrodes; 14) interior of the blade filled with a heat- 

insulating material (asbestos). 
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Fig. 2. Time changes of the temperatures of the gas and the inner blade wall: 

4-9) temperature of the blade wall at the thermocouple sites; 10) temperature 

of the gas flow around the blade, t, ~ r, sec. 

! 

c) for EYalT steel 

2 = 2 . 6 5 +  1.96.10 - 2 T ,  W / ( m . K ) ,  

cp = 2.69.106 + 2.77- 103 T ,  J / (m  3.K) ; 
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Fig. 3. Criterial relations for gas flow past the blade for the middle part of 

the section: a, b) for the suction face and the saddle of the blade. 

2 = 10.69 + 1.57.10 -2 T ,  W / ( m . K ) ,  

cp=3.48.106+0.8'103T, J / ( m a . K ) .  

The results of the numerical  simulation have shown a high efficiency fo r  the present method for 

reconstruction of the heat transfer coefficient cz in its actual range on the components of the blade section in a gas 

turbine engine at the side of both the gas and the coolant. 

II. Experiments on identifying a at the gas s ide  were carried out on a stand whose schematic diagram is 

shown in Fig. 1. 

Cold air, whose flow rate was determined in measuring section 1, came into combustion chamber 2 and 

the combustion products were blown around the preliminarily exposed blade 3 installed in a pack. 

The blades were prepared for the study as' follows. In two hollow blades, in middle cross sections along 

the fin height, windows were excised to provide access to the inner surface (in one blade at the side of the suction 

face and in the other, at the side of the saddle). In order to prevent electric erosion heat flow, figure slots 12 were 

made in the blade body, which were filled with fire cement, thus forming "one-dimensional" heat receivers 11 at 

points 4-9 (in Fig. 1 they are arbitrarily shown in one blade). On the surface of the heat receivers opposite the gas 

flow, thermal electrodes 13 were mounted; then the interior of the blades 14 was filled with asbestos and the excised 

parts of the suction face and the saddle were returned to their p l ace s . .  

The flow rate of the cold air in the test was 0.25 to 0.65 kg/sec for one blade passage; this rate corresponded 

to the range Re = (0.82-2.20) �9 105of Reynolds numbers for the gas constructed with the chord length as the char- 

acteristic dimension. 

In Fig. 2 one can see the ranges and time changes of temperature both in the gas flow (it was measured 

by thermocouple 10, fixed on the leading edge of the blade) and at points 4-9 on the inner surface of the blade. 

It should be noted that  in the tests each run with a particular gas flow rate was repeated three times, and 

therefore the reliability of the functions g(r) smoothed then by cubic splines at ~,(T) = 0 increased. In order to 

increase the smoothing accuracy, a definite part of the temperature range was chosen: we rejected the initial time 

interval of length ~l as undeveloped in the gasdynamic respect and the final time interval r2, starting from the time 

that the temperature difference between the sensor and the medium became commensurable with the instrumental 

error. Then, solution (4), in which the first three nonzero terms of the series were kept, was used to reconstruct 

the time functions of temperature and its gradient at points 4-9, and, consequently, the heat transfer coefficients 

a were also reconstructed at the measured temperature. 
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The results of the tests carried out with the present methods give stable values of ct. Dimensionless values 

of a at the gas side are shown in Fig. 3 as the dimensionless function log Nu = f(log Re) at the characteristic points 

of the blade section of a gas turbine engine. 

N O T A T I O N  

T(x, 3), temperature; x, coordinate; 3, time; g(z) and ~o(r), temperature and its gradient at the temperature 

sensor site; c, specific heat; p, density; 2, thermal conductivity; a, heat transfer coefficient; Nu, Nusselt number; 

Re, Reynolds number. 
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